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Abstract

A time domain solution method for general three-dimensional dynamic interaction of train and turnout (switch and

crossing) that accounts for excitation in an extended frequency range (up to several hundred Hz) is proposed. Based on a

finite element (FE) model of a standard turnout design, a complex-valued modal superposition of track dynamics is

applied using the first 500 eigenmodes of the turnout model. The three-dimensional model includes the distribution of

structural flexibility along the turnout, such as bending and torsion of rails and sleepers, and the variations in rail cross-

section and sleeper length. Convergence of simulation results is studied while using an increasing number of eigenmodes. It

is shown that modes with eigenfrequencies up to at least 200Hz have a significant influence on the magnitudes of the

wheel–rail contact forces. Results from using a simplified track model with a commercial computer program for low-

frequency vehicle dynamics are compared with the results from using the detailed FE model in conjunction with the

proposed method.

r 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Turnouts (switches and crossings) are essential components of railway infrastructure because they provide
flexibility to traffic operation. They are comprised a switch panel and a crossing panel, which are connected by
a closure panel, see Fig. 1. However, according to maintenance databases, turnouts stand for a large
contribution of reported track faults and this requires high maintenance costs [1].

Dynamic train–track interaction in turnouts is far more complex than on ordinary tangent or curved tracks.
Large wheelset displacements and multiple wheel–rail contacts are common. Severe impact loads with
significant contributions from high-frequency dynamic interaction are generated, when nominal wheel–rail
contact conditions are disturbed at various locations in the turnout. The largest disturbances occur when the
wheels are transferred from stock rail to switch rail in the switch panel and in the crossing panel when the
wheels pass the gap between wing rail and nose rail. Due to wear and plastic deformation, surface irregularities
with wavelengths of 1–10 cm may be present on the running surfaces of wheels and rails. This calls for models
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Nomenclature

In the current paper, one dot (_) above a vector denotes the first time derivative of the vector and
two dots (€) denote the second time derivative. Complex quantities are indicated by an underbar.
Quantities in local beam coordinate systems are indicated by an overbar. A tilde (~) above a
vector denotes the skew-symmetric matrix associated with the vector that means a cross product
r� F can be written as ~rF by using the skew-symmetric matrix. Subscripts v, r and w denote
vehicle, rail and wheel models, respectively. Matrices and vectors are bold-faced. The
abbreviation ‘cs’ is used for, coordinate system, throughout the paper.

an modal Foss damping of eigenmode n

Ab2t transformation matrix from local beam
coordinate system (cs) to track reference
cs

Ac transformation matrix from track refer-
ence cs to contact cs

Ag2t transformation matrix from global cs to
track reference cs

Aw2t transformation matrix from local wheel
fixed cs to track reference cs

A matrix in state-space formulation
bn modal Foss stiffness of eigenmode n

B matrix in state-space formulation
CH Hertzian stiffness constant
C damping matrix
Fn, Fn;back normal contact force between wheel

tread and rail and between back of wheel
flange and check rail

F generalized load vector
Fc, Fwr;t contact forces in contact and track

reference cs
Fi nodal forces at node i

Fr contact forces on rail beam centre line
Fw, Fw;back, Fw;tot equivalent loading on wheel

centre from wheel–rail contact forces,
from contact forces on back of wheel
flange and from sum of equivalent
contact loads in all wheel–rail contacts

K stiffness matrix
Lw position vector of wheel contact point in

local wheel fixed cs
mn modal mass of mode n

M number of modes
M mass matrix
Mc, Mwr;t spin moments in contact and track

reference cs
Mi nodal moments at node i

Mr spin moments on rail beam centre line
N number of dofs
Nr number of rail dofs
Nb beam element shape function matrix

Ntot total mapping matrix for one wheel–rail
contact point

pb point located on the beam axis with finite
element rail nodes

pc wheel–rail contact point
pr origin of rail fixed cs located on the rail

centre line which is 0.75m from the track
centre line

Pr transformation matrix
P matrix of eigenmodes
posrc global position of contact point on rail

surface
poswc global position of contact point on wheel

surface
q modal displacement vector
qv;f generalized flexible body coordinates of

the vehicle system
Q modal load vector
Qv;e, Qv;v externally applied loads and loads due

to gyroscopic and circulatory effect of
the vehicle system

rc position vector of rail contact point with
respect to rail centre line

rw position vector of wheel contact point
with respect to wheel centre in track
reference cs

r̄c position vector of rail contact point with
respect to beam centre line

~rw;back skew-symmetric matrix associated with
vector rw;back

~̄rc skew-symmetric matrix associated with
vector r̄c

Rr global position of rail centre line (origin
of rail fixed cs)

Rw global position of wheel centre (origin of
wheel fixed cs)

S transformation matrix
t time
T rotational transformation matrix
u generalized displacement vector
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uc, uc;back displacement vector at contact point pc

on rail surface and on check rail surface
ū displacement vector in local (body-fixed)

cs
ūb displacement vector in point pb along

beam centre line
x generalized nodal displacement vector
yr;back position of contact point on check rail

with respect to track centre
yw;back position of contact point on back of

wheel flange in track following cs with
respect to track centre

z state-space vector
gc contact angle
Dc, Dg local deformation vector of wheel and

rail surfaces in local contact cs and in
global cs

Dtk time step at time tk

dn, dn;back normal deformation between wheel
face and rail and between back of wheel
flange and check rail

zn relative modal damping of eigenmode n

yj angle of beam element j with respect to
global cs

m, mback friction coefficient in wheel–rail interface
and in wheel–check rail interface

qðnÞ real-valued eigenvector of eigenmode n

qðnÞ complex-valued eigenmode vector of
eigenmode n

j wheel yaw angle
on complex-valued angular eigenfrequency

of eigenmode n

o0n real-valued angular eigenfrequency of
eigenmode n
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of train and turnout that are valid in a wide frequency range up to about 1 kHz. In addition, the assembled
model needs to account for vehicle dynamics at low frequencies due to nominal turnout geometry and track
irregularities with wavelengths in the order of 1m.

The necessary detail in modelling of vehicle and track depends on the frequency range of interest. Dynamics
of vehicle and track are dominated by motion in different frequency ranges [2]. For example, the first modes of
vibration of the bogie frame and the car body occur below 10Hz, whereas the dynamic stiffness of the track
may be relatively constant for frequencies below around 20Hz. The first mode of vertical vibration of the
assembled track superstructure on ballast/subground normally occurs above 50Hz. Various mathematical
models for tangent track dynamics have been reviewed by Grassie [3]. For vertical excitation with frequencies
up to about 400Hz, the rail is represented satisfactorily by an Euler–Bernoulli beam, while for frequencies in
the interval 400–4000Hz the rail is better represented by a Rayleigh–Timoshenko beam. Significant features of
the lateral dynamics of a tangent track are resonances involving motion of rails and sleepers laterally on the
ballast at about 80Hz, lateral vibration of the rail on the railpad at about 150Hz, torsional vibration of the
rail on the railpad at about 350Hz, and the pinned–pinned mode at about 350Hz.

Traditionally, simulation of a train passing a turnout has been devoted to vehicle ride dynamics in the
low-frequency range 0–20Hz [4–6]. To model track dynamics in this frequency range, one co-following
front of turnout   rear of turnout 

 through rails 

 stock rails

check rails 

closure rails  

switch rails

 wing rails 
crossing nose 

switch heels

 switch toes flange way 

switching machines 

 crossing panel  switch panel  closure panel 

Fig. 1. Components of a turnout.
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Fig. 2. Maximum measured vertical wheel–rail contact forces in the crossing panel (a) and maximum measured lateral wheel–rail contact

forces in the switch panel (b) after low-pass filtering with different cut-off frequencies.
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mass-spring-damper model with few degrees-of-freedom (dofs) that is coupled to each wheelset may be
sufficient. Several commercial software that include such track models are available for simulation of low-
frequency vehicle dynamics [7]. These models are adequate for studies of vehicle motion but they are not useful
for understanding dynamics and degradation of track components. For example, bending and torsion of rails
and sleepers are not accounted for, and the interaction between adjacent wheelsets that is transmitted through
the track is neglected. An accurate prediction of high-frequency impact loads also requires that the structural
dynamic flexibility of wheelset and track in a wide frequency range is treated in the model [2].

To quantify the high-frequency content in the wheel–rail contact forces in the switch and crossing panels,
contact forces have been measured using an instrumented wheelset [8] and low-pass filtered with different cut-
off frequencies. Fig. 2 shows that the high-frequency contribution to the maximum vertical contact force on
the crossing is considerable, whereas the high-frequency contribution to the maximum lateral contact force in
the switch panel is not as significant. Andersson and Dahlberg [9] calculated vertical impact loads in the
crossing. Their study included a finite element (FE) model of the crossing panel and a modal superposition of
track dynamics considering frequencies up to 1500Hz, but their model was restricted to vertical train–track
interaction in the main route of the turnout.

In the present study, the model approach in Ref. [9] is extended. A detailed three-dimensional FE model of a
railway turnout is built in a commercial software I-DEAS [10]. The undamped model accounts for the
structural flexibility of the various rails and sleepers in the turnout. The continuous variations in shape of the
rail cross-sections, in length of the sleepers and in sleeper spacing along the turnout are accounted for. These
variations have significant influences on the spatial distribution of track stiffness and track inertia. Real-
valued eigenfrequencies and eigenmodes of the turnout are calculated and modal damping is added. The
modal model of the turnout is implemented in the in-house software DIFF3D [11] for simulation of general
(three-dimensional) train–track interaction involving both vertical and lateral track dynamics. The addition of
this track model enhances the model for general dynamic interaction between train and turnout that was
introduced in Ref. [12].
2. Turnout model

To account for the structural flexibility of the turnout, a FE model of the standard design UIC60-760-1:15
has been built. It is a three-dimensional model that considers displacements (translations and rotations), and
forces (and moments) in all three directions.

The model contains structural elements for the rails, railpads, sleepers, and ballast/subgrade, see Fig. 3. The
rails and sleepers are modelled by Rayleigh–Timoshenko–Saint-Venant beam elements with three
translational and three rotational dofs in each node. The rail in each sleeper bay is divided into eight beam
elements. The beam cross-sectional properties change step wise (from one element to the next) to account for
the continuous variation in rail cross-section. The variations in length of the sleepers and sleeper spacing are



ARTICLE IN PRESS

rails

sleeper

rail pad ballast/subgrade

rail 

sleepers

Fig. 3. Principal sketch of FE model of the turnout. Side view (top) and front view (bottom). Each spring element accounts for stiffnesses

in three directions.

Fig. 4. FE model of the turnout. The model accounts for the variations in rail cross-section and sleeper length along the turnout.
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also treated. The FE model of the turnout is shown in Fig. 4. The structural flexibility of the check rails are
included using beam elements with six dofs in each node. The check rail beam elements are connected to the
sleepers by rigid connections.

To represent each railpad, four linear spring elements are used between adjacent rail and sleeper nodes, see
Fig. 3. The four spring elements are positioned at the corners of the railpad to account for both the
translational and rotational flexibility of the railpad. To represent the flexibility of the ballast/subgrade, linear
spring elements are used under each sleeper, see Fig. 3.

Before the front of the turnout, a tangent track section including 10 sleeper bays is included to reduce the
influence of the boundary of the model when the wheel–rail contacts reaches the switch panel. The rails are
clamped in all directions at all boundaries of the model. The model contains a total of 99 sleepers with
constant cross-sections but with different lengths. The complete FE model consists of beam elements, spring
elements and rigid links with a total of N ¼ 26 760 dofs.

2.1. Modal parameters extraction

The modal superposition technique can often be an efficient approach in dynamic analysis of linear and
time-invariant structures. The method is used to transform a coupled system of equations of motion into an
uncoupled system of equations, see for example Ref. [13]. For a turnout model with N dofs, the N governing
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coupled equations of motion with mass M, damping C and stiffness K matrices can be expressed as

M €xþ C _xþ Kx ¼ F, (1)

where x is the generalized displacement vector and F is the generalized load vector. A partition of x contains
the generalized dofs u belonging to the different rails in the turnout model. Thus, u ¼ Prx, where Pr is a
transformation matrix. The total number of dofs belonging to the rail beam elements is Nr ¼ 17 814.

In cases when the damping of the structure can be assumed to be spatially distributed as a linear
combination of the mass and stiffness matrices of the model, the damping is referred to as proportional
(Rayleigh) damping. The equations of motion can then be decoupled by use of real-valued eigenmodes. In the
general case with non-proportional damping, a state-space formulation of the equations of motion and
complex-valued eigenmodes are required. Through modal expansion using 2M complex-conjugated
eigenmodes ðM5NÞ, the state-space vector z ¼ fu _ugT may be expressed as

z ¼ Pq , (2)

where P is a matrix of eigenmodes qðnÞ collected as column vectors

P ¼
qð1Þ . . . qð2MÞ

io1q
ð1Þ . . . io2Mqð2MÞ

" #
, (3)

and on are the complex-valued angular eigenfrequencies. The N coupled second-order equations of motion,
Eq. (1), are decoupled into 2M first-order equations [13] as

diagðanÞ_qþ diagðbnÞ q ¼ Q; n ¼ 1; 2; . . . ; 2M ðM5NÞ, (4)

where an and bn are so-called modal Foss dampings and stiffnesses [13]. In Eq. (4), q and Q represent the
modal displacement and modal load vectors for the truncated number of M modes. For a non-singular
diagonal matrix an, Eq. (4) can be reformulated as

_q ¼ AqþBF (5)

with matrices A and B defined as

A ¼ �diag½bn=an� ¼ diag½ion�; B ¼
1

an

qðnÞT
� �

. (6)

Here, an undamped ðC ¼ 0Þ FE model of the turnout was built using a commercial software [10]. Real-valued
eigenfrequencies o0n, eigenvectors qðnÞ and corresponding modal masses mn were calculated. To account for
the damping in the structure, relative modal damping zn was inserted into the model. Since measurement data
of damping in the turnout structure were not available, relative modal damping values according to Ref. [9]
were adopted. Relatively large relative damping values zn ¼ 0:5 were used for modes with eigenfrequencies
below 400Hz, while relative damping values zn ¼ 0:1, 0.2 and 0.01 were used for modes with eigenfrequencies
in the frequency intervals 400–700, 700–850 and 850–1100Hz, respectively. The modal Foss dampings an and
stiffnesses bn can then be expressed as, see Ref. [9],

an ¼ �i2mno0n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2n

q
,

bn ¼ 2mno2
0n ð1� z2nÞ � izn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2n

q� �
. (7)

The complex-valued modal Foss dampings an and stiffnesses bn, together with the real-valued eigenvectors qðnÞ

from the FEM software, are used to describe the turnout as a modal component in the in-house computer
program DIFF3D [11] that is used to solve the train–turnout interaction problem.
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2.2. Transient modal solution using a second-order hold (SOH) method

The transient solution at time t for the initial-value problem in modal coordinates

_q ¼ AqþBF; qðt0Þ ¼ q
0
, (8)

can be given in convolution integral form, see Meirovitch [14], as

qðtÞ ¼ eAðt�t0Þ qðt0Þ þ

Z t

t0

eAðt�tÞ BFðtÞdt, (9)

where qðt0Þ is the modal displacement vector at t ¼ t0 and eAðt�t0Þ is the transition matrix.
For the current type of problem, a solution method is developed and discussed by Andersson [11]. A first-

order hold (FOH) method was shown to be the most efficient method when compared with the zero-order
hold and the midpoint rule methods [11]. Here, the efficiency of a second-order hold (SOH) method is studied.

Expressing Eq. (9) in time-discrete form yields the exact solution in convolution integral form

qðtkþ1Þ ¼ eADtk qðtkÞ þ

Z tkþDtk

tk

eAðtkþDtk�tÞ BFðtÞdt, (10)

where Dtk ¼ tkþ1 � tk. Using the transformation s ¼ tk þ Dtk � t, Eq. (10) can be rewritten as

q
kþ1
¼ eADtkq

k
þ

Z Dtk

0

eA s BFðtk þ Dtk � sÞds. (11)

Truncating the Taylor expansion after the second term leads to a second-order polynomial approximation of
the load vector F

Fðtk þ Dtk � sÞ � Fk þ
dFk

dt
ðDtk � sÞ þ

1

2

d2Fk

dt2
ðDtk � sÞ2. (12)

Using the SOH method, Eq. (11) can be expressed as

q
kþ1
¼ Âkqk

þ B̂k;0Fk þ B̂k;1

dFk

dt
þ B̂k;2

d2Fk

dt2
, (13)

where

Âk ¼ eADtk ,

B̂k;0 ¼ A�1ðeADtk � IÞB ,

B̂k;1 ¼ ðA
�1
Þ
2
ðeADtk � ADtk � IÞB and

B̂k;2 ¼
2

Dtk

ðA�1Þ3 eADtk �
A2Dt2k

2
� ADtk � I

� �
B .

Assuming that the load is piecewise linear, d2Fk=dt2 ¼ 0, Eq. (13) yields the FOH solution discussed in
Andersson [11]. The computational cost to include the second-order term can be expensive. However, fewer
iterations are needed for the integration with the SOH method compared with the FOH method, and the
accuracy of the solution can be improved.

The nodal rail displacements and velocities are then calculated using the superposition of the modal
solutions, see Eq. (2)

u

_u

� �
¼

qð1Þ . . . qð2MÞ

io1qð1Þ . . . io2Mqð2MÞ

" # q
1

..

.

q
2M

2
6664

3
7775. (14)
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3. Vehicle model

The vehicle model used in this study is discussed in Refs. [11,12]. The model is a representation of a driving
(powered) bogie for a passenger train with two rigid wheelsets, a rigid bogie frame and linear primary
suspensions (springs and dampings). Three-dimensional motion is accounted for. The equations of motion of
the vehicle model are formulated in a floating frame of reference.

Two types of coordinate systems are used in the formulation: global and local coordinate systems. The
global coordinate systems is the inertial frame of reference that is fixed in space and time. The local coordinate
systems, one for each body of the vehicle system model, are body reference systems that move with respect to
the global reference. The configuration of body i in the system is defined by two sets of coordinates, ui

v;f and
ūi

v;f (overbar and subscript v denote body-fixed coordinates and vehicle model, respectively). The reference
coordinates ui

v;f define the global location of the reference frame of body i. The elastic coordinates ūi
v;f describe

the deformation of body i relative to that reference.
The elastic deformations are calculated using generalized flexible body coordinates qi

v;f as

ūi
v;f ¼ Siqi

v;f , (15)

where Si is a transformation matrix that normally involves some type of coordinate reduction. Thus, the
generalized displacement vector ui

v of body i contains both rigid body reference coordinates and flexible body
coordinates

ui
v ¼

ui
v;f

qi
v;f

" #
. (16)

With this choice of generalized coordinates, the equations of motion for body i can be written as

Mi
v €u

i
v þ Ci

v _u
i
v þ Ki

vu
i
v ¼ Qi

v;e þQi
v;v, (17)

where Mi
v , Ci

v and Ki
v denote the mass, damping and stiffness matrix of the vehicle, respectively. Externally

applied loads, such as gravity loads, wheel–rail contact loads and other interfacial loads between bodies in the
vehicle, are assembled in Qi

v;e. Gyroscopic and circulatory effects are included in Qi
v;v.

After some reformulation, the equations of motion are rewritten and solved using a first-order formulation

_ui
v

€ui
v

" #
¼ �

0 �I

ðMi
vÞ
�1Ki

v ðM
i
vÞ
�1Ci

v

" #
ui

v

_ui
v

" #
þ

0

ðMi
vÞ
�1

" #
ðQi

v;e þQi
v;vÞ. (18)

The vehicle model is coupled to the track model by wheel–rail contact force elements.
4. Wheel–rail contact geometry

As in most commercial multibody system (MBS) computer codes for simulation of vehicle dynamics, the
wheel–rail contact geometry problem is here solved in advance. Contact geometry functions are calculated at
several positions along the turnout due to the continuous variation in rail cross-section. Based on the current
lateral displacement of the wheel centre with respect to the rail centre, the pre-calculated contact geometry
functions are used in the form of look-up tables in the time integration analysis. The interpolation technique of
the contact geometry functions discussed in Kassa et al. [12] is followed.

In each time step, the relative lateral wheel displacement that is used as input in the look-up tables is
determined by summing the shortest distance between the wheel centre and the rail centre (which lies along the
axis normal to the track centre line) and the local rail lateral displacement. The contact point locations are
then interpolated from the look-up tables.
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5. Coordinate transformations

From the time integration solution, the physical displacements and velocities of the vehicle and turnout are
determined in the global coordinate system (cs). These values need to be transformed into local coordinate
systems in order to determine local displacements and to calculate all contact forces and contact locations. The
wheel–rail contact forces that have been calculated in the contact cs are then transformed back to the global cs
to be used in the equations of motion.

A plan view of the nominal geometry of the turnout in the diverging route and the different coordinate
systems are shown in Fig. 5. The coordinate systems used in the formulations are:
�

Fig

are
global coordinate system (cs) fX g;Y g;Zgg, fixed in time and space, with origin at the front of the turnout;

�
 track reference cs fxt; yt; ztg with origin on the track centre line moving with each wheelset;

�
 rail fixed cs fxr; yr; zrg, parallel to the track reference cs, with origin at the rail centre (pr in Figs. 5 and 6) to

define the rail surface profile;

�
 wheel fixed cs fxw; yw; zwg with origin at the wheel centre to define the wheel surface profile;

�
 local beam element cs fx̄j ; ȳj ; z̄jg of element j, with origin on the beam element j centre line, to describe nodal

displacements and forces;

�
 contact cs fxc; Zc; zcg located at each contact point pc, see Fig. 6.

5.1. Nodal displacement mapping

The nodal displacements and rotations of the rail beam elements in Eq. (14), ui ði ¼ 1; 2; . . . ; 6Þ, are derived
in the global cs. The corresponding values ūi ði ¼ 1; 2; . . . ; 6Þ in a local cs of a given beam element are derived
using the rotational transformation matrix T

ūi ¼
Tj 0

0 Tj

" #
ui, (19)
Xg

Yg

xt

yt x̄j

ȳj

beam centre line

track centre line

Xg

Yg

xt

yt

x̄j

ȳj
beam centre line

track centre line

rail centre line

xr

yr

Rr

beam j

pr

. 5. Turnout geometry showing track, rail and beam element centre lines in the diverging route. Global and local coordinate systems

indicated.



ARTICLE IN PRESS

Xg

Yg

x̄iȳi

x̄i+1
ȳi+1

�j

point pb

zr

yr

pb

r̄c

�c
�c

rc

�c

ȳj

z̄j

pc

pr

Fig. 6. Global cs and local cs at beam element nodes of beam element j (a), definition of contact coordinates with respect to rail and beam

centre lines (b). Point pb is located on the axis with the finite element rail nodes. Point pr is always located on the rail centre line which is

0.75m from the track centre line. Point pc is the wheel–rail contact point.
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where the transformation matrix Tj between the global cs fX g;Y g;Zgg and the local cs fx̄j ; ȳj ; z̄jg of beam
element j is expressed as

Tj ¼

cos yj � sin yj 0

sin yj cos yj 0

0 0 1

2
64

3
75.

Here yj is the angle of beam element j with respect to the global cs, see Fig. 6. Similarly, the nodal velocities _ui

in the global cs are transformed into _̄ui in the local beam cs by using

_̄ui ¼
Tj 0

0 Tj

" #
_ui. (20)

Each wheel–rail contact point changes its location on the rail surface in every time step. Further, the FE nodes
are located along beam axes which are not always on the centroidal axes of the rails. This means that
displacements and forces at the contact points pc on the rail surface need to be related with adjacent rail nodes
by use of a transformation mapping. Mapping the nodal displacements of beam j at nodes i and i þ 1 to a
point pb on the beam centre line under the contact point is performed by using the beam shape function matrix
Nb. The displacement vector in point pb is determined as

ūb ¼ NT
b

ūi

ūiþ1

" #
¼ NT

b

Tj 0 0 0

0 Tj 0 0

0 0 Tj 0

0 0 0 Tj

2
66664

3
77775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ntot

ui

uiþ1

" #
¼ Ntot

ui

uiþ1

" #
, (21)

where Ntot is the total mapping matrix for one contact point.
The displacements at contact point pc on the rail surface are obtained from the displacements in point pb on

the beam centre line using

ucð1 : 3Þ ¼ ūbð1 : 3Þ þ ūbð4 : 6Þ � r̄c,

ucð4 : 6Þ ¼ ūbð4 : 6Þ, (22)

where r̄c is the definition of the contact point position on the rail surface with respect to the beam centre line,
see Fig. 6. Then, the global position posrc of contact point pc on the rail surface is obtained from the position
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vector of point pr and a contribution from the flexibility of the rail beam elements as

posrc ¼ Rr þ AT
g2trc þ TT

j ucð1 : 3Þ, (23)

where Rr is the definition of the rail centre line (origin of rail fixed cs) in the global cs, see Fig. 5, and rc is the
position of the rail contact point in the rail fixed cs that defines the rail surface profile, see Fig. 6. Ag2t is a
rotational transformation matrix from the global cs to the track reference cs.

Likewise, for a rigid wheel and wheel axle, the global position poswc of the contact point on the wheel
surface is defined by the global position of the wheel centre and the geometry of the wheel as

poswc ¼ Rw þ AT
g�trw. (24)

Here, rw is the position vector of the wheel contact point with respect to the wheel centre in the track reference
cs and Rw is the global position of the wheel centre (origin of wheel fixed cs). The contact point on the wheel
surface with respect to the wheel centre in the wheel fixed cs is given by Lw (corresponding to rc for the rail).
The yaw angle j of the rigid wheelset is used to transform the position vector Lw of the wheel contact point to
the track reference cs as

rw ¼ Aw2tLw; Aw2t ¼

cosj � sinj 0

sinj cosj 0

0 0 1

2
64

3
75. (25)

6. Wheel–rail contact forces

In analysis of dynamic train–track interaction, Hertz solution method for the normal wheel–rail contact
problem is commonly used. Using the nonlinear Hertz theory, the relationship between the normal force and
the normal deformation is given by

F n ¼
CHdð3=2Þn ; dnX0;

0; dno0:

(
(26)

To determine the normal deformation dn (see Fig. 7), the difference in the global positions of the contact
points on the wheel and rail surfaces is calculated as

Dg ¼ posrc � poswc. (27)

Then, the local deformation Dc of the wheel and rail surfaces in the local contact cs is obtained by
transforming the deformation vector Dg from the global to the local contact cs as

Dc ¼ AcAg2tDg, (28)

where Ac is the transformation matrix from the track reference cs fxt; yt; ztg to the contact cs fxc; Zc; zcg

Ac ¼

0 cos gc sin gc

0 � sin gc cos gc

1 0 0

2
64

3
75.
�n

�c

�c

ub, back y

yw, back

yr, back

Fig. 7. Normal deformation at wheel–rail contact point on the rail head (a). Contact between check rail and back of wheel flange (b).
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Here gc is the contact angle, see Fig. 6. At each time step, the normal component of the local deformation
dn ¼ ðDcÞZ is determined and the normal contact force Fn is calculated using Eq. (26). To determine the
tangential wheel–rail contact forces (creep forces and spin creep moment), the longitudinal, lateral and spin
creepages are required. As the longitudinal velocity of the wheel is high compared with the lateral velocity, it is
assumed that the predominant direction of velocity in the contact is parallel to the tangent of the track. The
creepages in the contact plane, and the spin in the normal direction to the contact plane, are calculated from
the relative velocities of wheel and rail at the contact point. As large spin creepages and multipoint contacts
are common situations in turnout simulation, the creep forces are computed using the FASTSIM algorithm,
which is based on the simplified theory of rolling contact, according to Kalker [15].

If there is contact between the check rail and the back of the wheel flange, this induces a constraint on the
motion of the wheel. The check rail contact is modelled by a linear spring stiffness kback in the direction normal
to the contact plane. The spring stiffness is only activated if there is contact. The normal contact force acting
on the back of the wheel flange is thus calculated as

F n;back ¼
kbackdn;back dn;backX0;

0 dn;backo0:

(
(29)

The deformation dn;back normal to the contact surface is obtained from the difference in the positions of the
contact points on the back of the wheel flange and on the side of the check rail. Knowing the position yw;back of
the contact point on the back of the wheel flange in the track reference cs and the position of the side of the
check rail yr;back with respect to the track centre, see Fig. 7, the normal deformation dn;back at the check rail
contact is given by

dn;back ¼ yw;back � ðyr;back þ ðAb2tuc;backÞyÞ, (30)

where uc;back is the displacement vector of the check rail beam element at the contact point, cf uc in Eq. (22).
The transformation matrix Ab2t is used to transform a displacement of a point on the check rail beam centre
line from the local cs fx̄j ; ȳj ; z̄jg of beam element j to the track reference cs fxt; yt; ztg.

For the tangential direction, full sliding between the wheel and the check rail is assumed. The friction
coefficient in the check rail contact is denoted mback. The directions of the tangential contact forces are
determined by the yaw angle of the wheelset and the difference in the rolling and sliding velocities of the back
of the wheel flange contact point. The forces at the contact between the back of the wheel flange and the check
rail in the track reference cs are given as

Fback;t ¼ F n;back

Sxmback
1

Szmback

2
64

3
75. (31)

Here Sx and Sz define the directions of the tangential contact forces. Direction Sx is determined by the sign of
the difference in the rolling and sliding velocities of the wheel flange contact point as

Sx ¼

þ1 if ðv� ovrw;backÞ40;

0 if ðv� ovrw;backÞ ¼ 0;

�1 if ðv� ovrw;backÞo0:

8><
>:

The sign Sz is determined by the sign of the yaw angle of the wheelset

Sz ¼

�1 if j40;

0 if j ¼ 0;

þ1 if jo0:

8><
>:
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6.1. Contact forces mapping

The vehicle motion acting on the vehicle model is influenced by the external forces. The wheel–rail contact
forces described above contribute to the external load vector in the vehicle model. Here, as the wheels are
assumed rigid, the contact forces are easily mapped to forces acting on the wheel centre. This is done by first
mapping the contact forces Fc and the spin moments Mc from the contact coordinate systems to the track
reference cs as

Fwr;t

Mwr;t

" #
¼

AT
c 0

0 AT
c

" #
Fc

Mc

" #
. (32)

Then, the equivalent loading on the centre of the wheel in the global cs is obtained as

Fw ¼
AT

g2tFwr;t

AT
g2tðrw � Fwr;t þMwr;tÞ

2
4

3
5. (33)

The contribution of the contact force at the back of the wheel flange to the equivalent wheel loading is given
by

Fw;back ¼ �
AT

g2t

AT
g2t~rw;back

2
4

3
5Fback;t, (34)

where ~rw;back is the skew-symmetric matrix associated with the vector rw;back. The total equivalent load vector,
which contributes to the external load vector in the vehicle model, is the sum of the equivalent contact loads in
all wheel–rail contact points.

Fw;tot ¼
X

Fw þ Fw;back. (35)

The contact forces Fc and the spin moments Mc induced by the moving loads are mapped onto the rails as
nodal forces and moments. The contact loads ðFwr;t;Mwr;tÞ in the track reference cs, defined in Eq. (32), are
mapped onto the rail beam centre line point pb as

Fr

Mr

" #
pb

¼
�AT

b2tFwr;t

�AT
b2tMwr;t � ~̄rcA

T
b2tFwr;t

" #
¼ �

I

~̄rc

" #
AT

b2tFwr;t �
0

I

� �
AT

b2tMwr;t. (36)

Here ~̄rc is the skew-symmetric matrix associated with the vector r̄c. Then, the forces at point pb are mapped
onto nodal loads using the total load mapping matrix Ntot, see Eq. (21), as

Fi

Mi

Fiþ1

Miþ1

2
66664

3
77775 ¼ NT

tot

Fr

Mr

" #
pb

. (37)

These nodal loads contribute to the generalized load vector F in Eq. (5).

7. Numerical examples and discussion

To demonstrate the influence of the detailed track model, examples from simulations of the dynamic
interaction between the bogie model and the turnout model are presented in this section. A vehicle with axle
load 20 tonnes and train speed 60 km/h is used. The geometry of the turnout is the standard design UIC60-
760-1:15 with curve radius 760m and crossing angle 1:15. The simulations were performed for the vehicle
model running along the diverging route of the turnout in facing move (from the switch panel to the crossing
panel). Coefficients of friction at the wheel–rail contacts and for contact at the back of the wheel flange are
taken as m ¼ 0:3 and mback ¼ 0:15, respectively. A linearized Hertzian contact stiffness kH ¼ 1GN=m for
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wheel–rail normal contact and a contact stiffness kback ¼ 1GN=m for contact at the back of the wheel flange
are used.

The total length of the FE model of the turnout is 60m. Each railpad is represented by four linear springs in
each direction with total stiffness 240MN/m in the vertical direction and 120MN/m in the horizontal
directions. Linear springs under the sleeper nodes are used to represent the ballast/subgrade stiffness. The
stiffness values are 50MN/m in the vertical direction and 25MN/m in the horizontal directions.

Real-valued modal parameters were calculated in the FEM software. Several modes in the lower
eigenfrequency regime are related to the longitudinal displacement of sleepers. Since the influence of such
modes on the vertical and lateral wheel–rail contact forces is not significant, the track dofs in the longitudinal
direction were constrained to zero. Several elastic modes of the sleepers are also present in the lower
eigenfrequency regime. However, in Ref. [16], good agreement between measured and simulated vertical
contact forces was observed when using a track model with rigid sleepers. On that note, the sleeper beam
element properties were set to rigid. The rail boundaries of the model are clamped. The output file from
the FEM software included nodal coordinates for the rail beam elements in the diverging route, mode
shapes, eigenfrequencies and modal masses. The number of rail dofs in the diverging route is 9408. The data
file together with the assumed modal damping values, described in Section 2.1, were used to form the
equations of motion of the turnout model. Wheel–rail contact geometry functions were pre-calculated at 36
positions along the turnout using the software GENSYS [17]. Linear interpolation between two adjacent
locations with pre-calculated contact functions was used to determine the contact conditions at intermediate
positions.

7.1. Convergence study

In the first example, a convergence study is performed with an increasing number of eigenmodes of the
flexible turnout model. The eigenfrequencies of the first 500 modes of the turnout model are shown in Fig. 8.
The eigenfrequencies are neither well separated nor clustered in specific frequency regions. Using the
procedure presented in Section 2.1, complex-valued modal parameters for the lowest 500 eigenmodes were
determined. Some examples of modes of vibration are shown in Figs. 9 and 10. The modes corresponding to
the lowest eigenfrequencies are dominated by lateral deformation as shown in Fig. 9. Fig. 10 shows the first
five vertical vibration modes of the rails and sleepers on the ballast.

Simulations of the dynamic interaction between bogie and turnout were performed using 10, 50, 100, 250 or
500 eigenmodes. Fig. 11 shows the lateral creep force and the normal contact force in the switch panel when
using 250 modes for the FOH and SOH methods. Two-point contact situation, one on the stock rail and the
other on the switch rail, is observed at a transition region in between 3.5 and 7.5m, then after, the wheel is
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Fig. 8. Eigenfrequencies of the first 500 modes.
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Eigenmode 1 Eigenmode 2 Eigenmode 3 Eigenmode 5 Eigenmode 11

Fig. 9. Eigenmodes 1, 2, 3, 5 and 11 of the turnout model with undamped eigenfrequencies f 1 ¼ 75:6Hz, f 2 ¼ 80:6Hz, f 3 ¼ 84:3Hz,

f 5 ¼ 85:7Hz and f 11 ¼ 88:8Hz. Lateral deformation is dominating for these modes.
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fully supported by the switch rail. Very similar results were obtained for the FOH and SOH methods as shown
in Fig. 11. In Table 1, the maximum eigenfrequency included and the simulation time using FOH and SOH for
the five chosen number of eigenmodes are listed. Using 250 eigenmodes, eigenfrequencies up to 211.5Hz are
included. The difference in simulation times using the two transient solution methods, FOH or SOH, was not
significant, see Table 1. The simulations were performed on a PC with an Intel(R) Core processor.

Figs. 12–17 show simulation results using several eigenmodes. The lateral displacement of the leading
wheelset is shown in Fig. 12 using 10, 50, 100, 250 or 500 eigenmodes. The positive displacement indicates that
the wheelset is displaced outwards in the curve. The large lateral wheelset displacements at distances 0 and
51m are due to the abrupt changes in track curvature at the front and rear of the turnout. In Fig. 13, the
lateral displacement is displayed with more detail at three sections: the switch panel (A), the closure panel (B)
and the crossing panel (C).

The influence of the number of modes on the lateral and vertical wheel–rail contact forces are presented in
Figs. 14–17. The presented contact force in either the vertical or the lateral direction is the sum of the
wheel–rail contact forces (in cases of multiple contact) for each wheel/rail combination. Due to the constant
variation in rail profile, discontinuities in the contact condition and contact point jumps in the switch and
crossing panels, the lateral and vertical contact forces reach peak values. The contact forces reach a steady-
state condition in the closure panel, where the rail profiles are constant. The calculated lateral contact force
using 100, 250 or 500 modes is shown in Fig. 14, and in more detail, for the switch panel (A) and the crossing
panel (C) in Fig. 15. The resulting force has converged in the switch panel when using 250 modes. The vertical
contact force for different numbers of eigenmodes is studied in Figs. 16 and 17. Again, the resulting force has
converged in the switch panel when using 250 modes. However, a larger number of modes may be required to
obtain accurate results in the crossing panel if higher resonance frequencies are excited by discontinuities or
irregularities in the switch and crossing panels.
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Eigenmode 36Eigenmode 32 Eigenmode 48 Eigenmode 55Eigenmode 51

Fig. 10. Eigenmodes 32, 36, 48, 51 and 55 of the turnout model with undamped eigenfrequencies f 32 ¼ 101:8Hz, f 36 ¼ 106:1Hz,

f 48 ¼ 119:2Hz, f 51 ¼ 121:0Hz and f 55 ¼ 122:3Hz. Vertical deformation is dominating for these modes.
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Fig. 11. Lateral creep force (a) and normal contact force (b) in the switch panel when using 250 modes. Solid lines correspond to the first

contact point while broken lines correspond to the second contact point. Thick lines (solid or broken line) are based on SOH method

solutions while thin lines (solid or broken line) correspond to FOH solutions. The thick and thin lines are overlapping.
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7.2. Comparison between GENSYS and DIFF3D simulation results

In a previous study, a multibody model of dynamic interaction between a bogie and the UIC60-760-1:15
turnout was developed using the commercial software GENSYS [17]. It was compared with DIFF3D results
when using a rigid track model [12]. In the second example, simulations with GENSYS and DIFF3D are
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Table 1

Simulation times using different numbers of modes M for the turnout model

Number of modes M Maximum eigenfrequency f (Hz) Simulation time (h)

SOH FOH

10 88.4 2.559 2.823

50 119.9 3.919 3.838

100 142.7 5.419 5.101

250 211.5 13.841 14.711

500 296.8 89.443 –
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Fig. 12. Lateral displacement of the leading wheelset.
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compared when using a flexible track model. Note that the track model used in GENSYS is a simple mass-
spring-damper model with few dofs (seven dofs) that is coupled to each wheelset of the vehicle model [1].

Results from using the simple track model in GENSYS are compared with analyses using the complex FE
model of the turnout in Figs. 18 and 19. For comparison, DIFF3D results based on modal models with either
10 modes or 500 modes are shown. In the closure panel, where the rail cross-sections and the track properties
are relatively constant, good agreement between GENSYS and DIFF3D is obtained for both 10 and 500
modes. However, in the crossing panel, the maximum lateral contact force from GENSYS is about 50 % lower
than the corresponding force when using 500 modes in DIFF3D, see Fig. 18.

Finally, the lateral wheelset displacement using DIFF3D with either 10 or 500 flexible modes is compared
with GENSYS results in Fig. 19. Apart from some differences in the switch panel (at around 8–10m) and in
the crossing panel, the agreement between the two computer programs is good.

7.3. Discussion

In order to simulate turnout degradation, such as wear and plastic deformation of rail profiles, an accurate
prediction of wheel–rail contact force magnitudes is necessary. Previous measurements of wheel–rail contact
forces in a turnout have shown that the high-frequency contribution to the vertical contact force in the
crossing panel is significant, see Fig. 2. Thus, in order to improve the accuracy of calculated contact forces
compared to traditional methods [4–6], the approach used in this paper is to study dynamic train–turnout
interaction in a wider frequency range by including a detailed turnout model. In this model, the flexibility of
rails and sleepers in bending and torsion may be accounted for.
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Fig. 13. Lateral wheelset displacement zoomed at section A (a), section B (b) and section C (c) in Fig. 12.
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Fig. 14. Lateral wheel–rail contact force on the outer wheel of the leading wheelset.
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It is observed from Figs. 12 and 13 that even with 500 modes, the wheelset displacement has not yet fully
converged. However, the main features of the response are captured already with 10 modes as this response is
mainly dependent on the low-frequency vehicle dynamics and the nominal turnout geometry, see Fig. 19.
Therefore, it is suggested that for investigations of vehicle dynamics, acceptable results can be obtained with
only a few flexible modes of the track model.
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Fig. 15. Lateral wheel–rail contact force on the outer wheel of the leading wheelset zoomed at section A (a) and section C (b) in Fig. 14.
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Fig. 16. Vertical wheel–rail contact force on the outer wheel of the leading wheelset.
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Fig. 17. Vertical wheel–rail contact force on the outer wheel of the leading wheelset zoomed at section A (a) and section C (b) in Fig. 16.
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It is shown that the lateral wheel–rail contact forces in the switch and closure panels has converged when
modes up to 200Hz are included. This means that the important features of lateral wheel–rail interaction, such
as the lateral motion of rails and sleepers on the ballast at about 75–100Hz and the lateral vibration of the
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Fig. 18. Lateral wheel–rail contact forces on the outer wheel of the leading wheelset using GENSYS (a), DIFF3D with 10 modes (b) and

DIFF3D with 500 modes (c).
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Fig. 19. Lateral wheelset displacement along the turnout using GENSYS, DIFF3D with 10 modes and DIFF3D with 500 modes.
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rails on the railpad at about 150–200Hz are accounted for. However, in the crossing panel, the calculated
wheel–rail contact forces have not converged when using 500 modes. A larger number of modes that include
vertical vibration of the rails on the railpads is required in the analysis. Since computational times are



ARTICLE IN PRESS
E. Kassa, J.C.O. Nielsen / Journal of Sound and Vibration 320 (2009) 893–914 913
excessive already with 500 modes, a more efficient modal reduction method that identifies and includes the
most significant modes is needed.
8. Concluding remarks

A FE model of a standard turnout design has been built using a commercial computer program. The model
includes the structural dynamic flexibility of rails, rail pads and sleepers on ballast, and it carefully takes into
account the spatial distribution of mass and stiffness along the turnout. Based on calculated real-valued modal
parameters from the commercial software and assumed relative modal dampings, complex-valued modal
parameters were determined to describe the turnout as a modal component in the in-house software DIFF3D
for simulation of dynamic train–track interaction.

The described method improves the accuracy of the results from the train–track interaction simulations as it
takes into account dynamic excitation in an extended frequency range compared to most commercial
computer programs for vehicle dynamics. In particular, the magnitudes of wheel–rail contact forces are
sensitive to high-frequency impact excitation in the switch and crossing panels. In addition, the response (such
as displacements and sectional forces) of the various rails and sleepers in the turnout can be investigated.

For the track subsystem, first-order hold (FOH) and second-order hold (SOH) time integration solution
methods were compared. Simulations were performed using the first 500 modes. The highest eigenfrequency
was about 300Hz. The influence of the number of modes on the convergence of wheel–rail contact forces and
wheelset displacement was studied. Even 500 modes was not fully sufficient for the wheelset displacement,
whereas the lateral contact forces seemed to have converged when 250 modes were accounted for. Thus, to
improve accuracy a larger number of modes may be required as some of the significant resonances, such as the
torsional and pinned–pinned resonance frequencies of the rails, are well above 300Hz.

The simulation time increases rapidly with increasing numbers of modes in the modal superposition. To
reduce simulation time, a modal superposition method that identifies and excludes less important modes
(depending on type and location of the calculated response) would be useful.
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